@[specialize]
Equations
- Nat.foldAux f s 0 _fun_discr = _fun_discr
- Nat.foldAux f s (Nat.succ n) _fun_discr = Nat.foldAux f s n (f (s - Nat.succ n) _fun_discr)
@[inline]
Equations
- Nat.foldRev f n init = Nat.foldRev.loop f n init
@[specialize]
Equations
- Nat.foldRev.loop f 0 _fun_discr = _fun_discr
- Nat.foldRev.loop f (Nat.succ n) _fun_discr = Nat.foldRev.loop f n (f n _fun_discr)
@[specialize]
Equations
- Nat.anyAux f s 0 = false
- Nat.anyAux f s (Nat.succ n) = (f (s - Nat.succ n) || Nat.anyAux f s n)
@[inline]
Equations
- Nat.repeat f n a = Nat.repeat.loop f n a
@[specialize]
Equations
- Nat.repeat.loop f 0 _fun_discr = _fun_discr
- Nat.repeat.loop f (Nat.succ n) _fun_discr = Nat.repeat.loop f n (f _fun_discr)
Equations
Equations
Equations
Equations
Equations
Equations
- Nat.instAntisymmNatLeInstLENat = { antisymm := @Nat.instAntisymmNatLeInstLENat.proof_1 }
Equations
@[inline]
Equations
- Prod.foldI f i a = Nat.foldAux f i.snd (i.snd - i.fst) a