Documentation

Init.Data.Range

structure Std.Range :
Type
Equations
@[inline]
def Std.Range.forIn {β : Type u} {m : Type uType v} [inst : Monad m] (range : Std.Range) (init : β) (f : Natβm (ForInStep β)) :
m β
Equations
@[specialize]
def Std.Range.forIn.loop {β : Type u} {m : Type uType v} [inst : Monad m] (f : Natβm (ForInStep β)) (fuel : Nat) (i : Nat) (stop : Nat) (step : Nat) (b : β) :
m β
Equations
instance Std.Range.instForInRangeNat {m : Type u_1Type u_2} :
Equations
  • Std.Range.instForInRangeNat = { forIn := fun {β} [Monad m] => Std.Range.forIn }
@[inline]
def Std.Range.forIn' {β : Type u} {m : Type uType v} [inst : Monad m] (range : Std.Range) (init : β) (f : (i : Nat) → i rangeβm (ForInStep β)) :
m β
Equations
@[specialize]
def Std.Range.forIn'.loop {β : Type u} {m : Type uType v} [inst : Monad m] (start : Nat) (stop : Nat) (step : Nat) (f : (i : Nat) → start i i < stopβm (ForInStep β)) (fuel : Nat) (i : Nat) (hl : start i) (b : β) :
m β
Equations
Equations
  • Std.Range.instForIn'RangeNatInferInstanceMembershipInstMembershipNatRange = { forIn' := fun {β} [Monad m] => Std.Range.forIn' }
@[inline]
def Std.Range.forM {m : Type uType v} [inst : Monad m] (range : Std.Range) (f : Natm PUnit) :
Equations
@[specialize]
def Std.Range.forM.loop {m : Type uType v} [inst : Monad m] (f : Natm PUnit) (fuel : Nat) (i : Nat) (stop : Nat) (step : Nat) :
Equations
instance Std.Range.instForMRangeNat {m : Type u_1Type u_2} :
Equations
  • Std.Range.instForMRangeNat = { forM := fun [Monad m] => Std.Range.forM }
theorem Membership.mem.upper {i : Nat} {r : Std.Range} (h : i r) :
i < r.stop
theorem Membership.mem.lower {i : Nat} {r : Std.Range} (h : i r) :
r.start i