Documentation

Init.Data.Array.DecidableEq

theorem Array.eq_of_isEqvAux {α : Type u_1} [inst : DecidableEq α] (a : Array α) (b : Array α) (hsz : Array.size a = Array.size b) (i : Nat) (hi : i Array.size a) (heqv : Array.isEqvAux a b hsz (fun x y => decide (x = y)) i = true) (j : Nat) (low : i j) (high : j < Array.size a) :
Array.get a { val := j, isLt := high } = Array.get b { val := j, isLt := (_ : j < Array.size b) }
theorem Array.eq_of_isEqv {α : Type u_1} [inst : DecidableEq α] (a : Array α) (b : Array α) :
∀ (a : (Array.isEqv a b fun x y => decide (x = y)) = true), a = b
theorem Array.isEqvAux_self {α : Type u_1} [inst : DecidableEq α] (a : Array α) (i : Nat) :
Array.isEqvAux a a (_ : Array.size a = Array.size a) (fun x y => decide (x = y)) i = true
theorem Array.isEqv_self {α : Type u_1} [inst : DecidableEq α] (a : Array α) :
(Array.isEqv a a fun x y => decide (x = y)) = true
instance Array.instDecidableEqArray {α : Type u_1} [inst : DecidableEq α] :
Equations